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A full-implicit-continuous-Eulerian (FICE) scheme is developed for solving multidimen- 
sional transient magnetohydrodynamic (MHD) flow problems. The resulting difference 
equations are solved through a single-loop iteration in which the time-advanced pressure 
equation is solved by using the line-by-line iteration method (Patankar, “Numerical Heat 
Flow,” Hemisphere, Washington, D.C., 1980). In order to keep the boundary conditions self- 
consistent, a new formulation of boundary conditions is developed for this two-dimensional 
initial boundary value magnetohydrodynamic (MHD) flow problem. The merit of this new 
formulation is that improved consistency and accuracy on both physical and computational 
boundary values are obtained when compared to earlier methods. The stipulation of the 
boundary conditions is based on the projected characteristic method. The boundaries in a 
numerical computation may be classified into the following two categories: (i)Physical 
boundaries, on which the number of dependent variables are to be arbitrarily specified, would 
be limited to the number of incoming characteristics that are projected in the n - t plane, 
where n is the unit normal of the boundary in question and t is time. The rest of the variables 
(if any) should satisfy the compatibility equations along the outgoing projected characteristics 
in the n - t plane. (ii) Computational boundaries, on which a related set of compatibility 
equations should also be satisfied. In addition, a new nonreflecting boundary condition is 
introduced by taking all the spatial derivative terms of dependent variables to be zero in the 
characteristic equations along the incoming projected characteristics in the n-t plane. A 
numerical example for an astrophysical fluid is given to illustrate the present algorithm and 
boundary conditions. In addition, the comparison between the results of using the present 
nonreflecting boundary condition and the two conventional ones (i.e., equivalue and linear 
extrapolations) is made. It shows that the nonreflecting boundary condition formulated in this 
paper gives much smaller (almost null) reflection after the disturbance has reached the 
boundary and, therefore, can provide more accurate numerical results. 

I. INTRODUCTION 

There are many astrogeophysical flow problems in which the evolutionary 
movement is very slow (e.g., the sun’s photospheric motion). Thus, a very accurate 
and stable numerical method for long-time computation is required in order to have 
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physically meaningful results. The algorithm for the full-implicit-continuous-Eulerian 
(FICE) scheme developed here is an attempt in this direction. 

The present method is a generalization of the implicit-continuous-Eulerian (ICE) 
scheme which was first put forward by Harlow and Amsden [ 1, 21 and then extended 
to magnetohydrodynamic flows by Brackbill and Pracht 131 and Han, Wu, and 
Nakagawa [4]. On the other hand, the alternating direction implicit (ADI) techniques 
have also been employed to solve this type of problem by Lindemuth and Killeen [ 5 ] 
and Schanck and Killeen 161. In some of those applications of the ICE technique, an 
artificial equation of state and some explicit treatments were assumed in order to 
avoid a simultaneous solution of the MHD equations as a whole. According to 
Westbrook [7], the assumed equation of state will introduce systematic errors to the 
calculation of the density and velocity and, thus, to other physical quantities as well. 
Therefore, these ICE applications lead to large numerical errors in those regions 
where variations of density and pressure have opposite signs. Meanwhile, the implicit 
treatments with two time-level weighed average schemes are not stable enough to 
assure meaningful physical-realistic numerical solutions [ 81. Therefore, the FICE 
scheme was developed together with the actual equation of state for this study. The 
resulting set of difference equations as deduced from the MHD equations, is solved 
by iteration. In addition, the Poisson-type equation is used to compute the time- 
advanced pressure. If this equation were to be solved by a successive overrelaxation 
(SOR) method as done by others [4], a two-fold nested iteration loop would be 
necessary, thereby leading to a very cumbersome solution procedure. In order to 
alleviate this complexity, we employ the “line-by-line” method suggested by Patankar 
[ 8 ] to solve the Poisson-like equation. In view of the excellent convergence property 
of the line-by-line method, we only use this procedure once for each step of the 
solution of Poisson’s equation; thus, a single loop is used. 

In this paper, the detailed solution procedure for MHD equations by using the 
FICE scheme is presented. Furthermore, a numerical example is chosen to 
demonstrate the validity of this scheme. In addition, a detailed study concerning the 
boundary conditions, based on the projected characteristic method [ 9 1, is presented. 
The governing equations are described in Section II. Their finite difference 
formulation and the solution procedures are given in Sections III and IV, respectively. 
Treatment of the boundary condition is given in Section V. A numerical example is 
illustrated in Section VI. Finally, concluding remarks are given in Section VII. 

II. GOVERNING EQUATIONS FOR THE PHYSICAL SYSTEM 

The physical system under consideration is a general case of a transient 
magnetohydrodynamic (MHD) flow in which an initial steady state is subject to a 
finite amplitude disturbance. For the sake of simplicity (without losing any essence of 
this method), we shall use a two-dimensional, nonplanar, time-dependent, ideal, MHD 
equation defined in rectangular coordinates to illustrate the basic method for the 
FICE scheme. In the ideal MHD equations, all dissipation terms (i.e., thermal 
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conduction and finite electric conductivity) are ignored. However, these effects will 
not influence the generality of the present suggested method. According to the 
description mentioned above, the governing equations for this MHD flow can be 
expressed in the following form: 

as,? 
at - ax (uB.r - uB,), 

$ = ; (wB, - uB;) + ; (wB, - vB,), 

8T 
-= 
at (8) 

and 

P=PRT, (9) 

where u, v, and w are the three velocity components, and B,, B,, and B2 the 
magnetic field components. The other notations are defined as: p is the density; T is 
temperature; g is the gravitational acceleration; p is the thermal pressure; and R is 
the universal gas constant. It is noted that we have suppressed the factor 47-c in the 
term of Lorentz’s force through an adequate choice of the unit of magnetic field. 

III. DIFFERENCE EQUATIONS AND BOUNDARY CONDITIONS 

In order to retain the computational accuracy while avoiding the checkerboard 
solution of pressure and velocity [8], uniform Eulerian mesh with a staggered grid is 
adopted as shown in Fig. 1. When a time-dependent equation is expressed in a finite 
difference form, the temporal derivatives will depend on those values at adjacent time 
steps. On the other hand, the spatial derivatives can be expressed in terms of the 
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FIG. 1. (a) Computational meshes, (b) layout of variables and indices in the mesh. 

values of the old time step (i.e., as in the explicit scheme). Alternatively, they may be 
expressed in terms of values of the new time step (i.e., as in the full-implicit scheme) 
as suggested by [8] or at both adjacent time steps (i.e., as in the two-time-level 
weighted average scheme). 

In the present algorithm, the full-implicit scheme is employed because of its ability 
to maintain excellent stability [8]. The old (or given) values of dependent variables 
are labeled by a superscript n. For convenience, the label for the values at each new 
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time step (i.e., (n $ l)th step) is deleted. Then, the resultant finite difference equations 
become 

=A [(P”)i-l/2.j- (P”)i+llZ.jl ++ l(P)i,j-112 - @)i.j+l,fZl~ (10) 

+A l”i+Il~..i(~i,iui~LI*.,i-Pi+I.,jui+~/Z,,j)l 

+ & b4i+ l/2,,& I/Z - (WC>. l+ I:*.,i+ I/* I + + (CBy)i,.i + CBy)i+ I.,j> 

x & ((Bp)i.j- (By)i+l,,j) 

+ & (tBx)i.j+l + tBx)i+l,j+l - CBx)i,j-l - CBx)i+l,j-l)) 

+ & (CBi)i..j - CBI)i+ I. j>, 

= + (Pi,j - Pi,j+ 1) + & I(W 1/2,j+ I/Z - (P”)i+ I/Z,j+ 112 I 

+-I_ [Ui.j+Il*(Pi,jui,j~I/Z-Pi,j+IVi.j+3/*)l 
4 

+ +((Bx)i,j+ (B.r)i,j+l) l&(tBy)i+l,j+ CBy)i+l,j+l 

-(B,)i-,.j-(B,)i,,j+l)+~((B,)i,j-(B,)i,j+,)J 

+ & (PI)i,j - CBZ)i,j+ I> - + dPi,j +Pi.j+ I>? 

(11) 

(12) 
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i [(Pw>i,j - (Pw)Y,jl 

+ [(Pvw)i,j-I/2 - (Puw)i,j+1/21 + & (B.x)i,j((Bz)i+l,j- (Bz)i-l,j) 

+ 2Ay L (By)i,j((Br)i,j+ I - (Bz)i,j-l)3 (13) 

= & LUi,j+ LIZ(@y)i,j + CBy)i,j+ 1) - ‘i,j- ll*(CBy)i,j + CBy)i,jpl>l 

+ & [“i.j-1/2((Bx)i,j + CBx)i,j-l)- zli,j+I/2((Bx)i,j + (&)i,j+l)l, (14) 

=- ul+l/2,j((Bx)i,j + CBx)i+ l,j> - ui-I12,j((Bx)i.j + (Bx)i-l.,j)J 
2fix ’ 

+ & I”i- */2.j((By)i,j + CBy)i-l,j) - Ui+ L12,j((By)i,.j + CBy)i+ 1.,j)l~ (15) 

=A [wi+I.j(Bx)i+I,j- wi-l,j(Bx)i-l,jl 

+& l”i-1/2,j((Bz)i,j+ (B,)i-,,j)-ui+l,2,j((B,)i.j+ (B.z)i+l,,j)l 

+ & lwi,j+ lPy)i,j+ 1 - wi,j- lCBy)i,j- 11 

+ & [“i,j-Il*((Bz)i,j + CBz)i,j-l> - ui,j+ l/*((Br)i,j + CBz)i,j+ ,)I, (16) 
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=& [ui-l/z,j(Ti,j+ Ti-,,j)-Ui+,/*~j(Ti..i+ T;+l,j>J 

+ & [ ui,,/- l/z(Ti,j + Ti,i- 1) - ui,j+ I/z(Ti,,i + Ti,j+ ,>I 

(17) 

and 

In this set of equations, the subscripts for products of several quantities are assigned 
to each of the quantities of the products, that is, 

(Puu)i+ I/Z,i- I/2 =P’ r+I12,j-l/2UitI/2.j~1/2L’itL/2,j-I/2~ 

and the zip mode [2] is used to discretize the terms like (3/ax)(pu2) and (8/&)(pu2) 
such as 

I I $ (PU2) ~PitI,j”i+l/2.jUit3/2,j~Pi,jUi-1/2.,~Ui+1/2,j~ 
it Il2.j 

I I 
g (PV'> =Pi jtlvi jt1/2vi,jt3/2-Pi,jL~i,j-1/2vi,jt1~2~ 

i,j+I/Z ’ ’ 

Furthermore, the values at those locations on which quantities have not been 
specified are cast in the following forms: 

and 

Pit 1/2.ji l/2 = f(Pi.j + Pi+l.j + Pi.j+ 1 + Pitl.j+ 113 

Uit 1/2,j+ l/2 = tC”i+ I/Z,j + uit I/2,jt IL 

L’it l/2.j+1/2 = S(‘i,j+l/Z + vi+l,j+I/2)~ 

wi+1/2.j=~(wi,j+ wi+l,j)’ 

‘i.jt I/2 = $(‘i- 1/‘2,j + uit I/Z.j + ui-I/2.j+ 1 + uit 1/2,jt 111 

Ui+l/2,j=a<“i,j-l,2 + 'itl,j-1/2 + vi,,jt1/2 + vi+l,jtl/?)’ 

(19) 

It is now necessary for us to discuss the ways in which the boundary conditions 
should be specified for solving these difference equations numerically. In this 
computation, the boundary conditions are specified according to the following rules: 
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(1) Physical boundary conditions. On the physical boundary, the number of 
dependent variables which can be arbitrarily specified is based on the number of the 
incoming characteristics projected in the n - t plane, where n is the unit normal to 
the physical boundary. The rest of the conditions (i.e., the number of variables and 
the number of characteristics) must satisfy the compatibility equations along the 
outgoing projected characteristics in the n - t plane. 

(2) Computational boundary conditions. The computational boundary is 
introduced for the purpose of defining the domain of computation. In addition to 
compatibility equations, nonreflecting boundary conditions are used in which all the 
characteristic equations are written along the incoming projected characteristics in 
the n - t plane. Simultaneously, the spatial derivatives of the dependent variables 
(i.e., B, V, etc.) are taken to be zero at this boundary. A detailed account and 
discussion of the specification of the boundary conditions in a consistent format will 
be presented in Section V. 

IV. THE FICE ALGORITHM 

In the ICE (implicit-continuous-Eulerian) method, the continuity and momentum 
equations are combined with the aid of simulated equations of state, leading to a 
Poisson-like equation for advanced pressure. However, the other terms in the 
momentum equations are treated explicitly in order to minimize computing time. This 
procedure, however, restricts the accuracy of the ICE scheme. In the newly developed 
FICE scheme under discussion, all the quantities except the density (p), pressure (p), 
and velocity (V) are computed explicitly through the values obtained at the 
immediately previous iteration step (i.e., the kth iteration step). Then, these values are 
substituted into the pressure equation for the (k + 1)th iteration step. A line-by-line 
iteration method is then used in this study. This method can be illustrated by 
referring to Fig. 2. First, we consider the pressure equation at the grid points along a 

FIG. 2. Representation of the line-by-line method, where the solid dot represents the values at the 
(k + 1)th iteration and X represents the values at the kth iteration. These values are all at the same time 
step. 
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chosen line. This line contains the pressures at the grid points (shown by crosses) 
along the two neighboring lines. The instantaneous values for the pressure at these 
grid points were their latest values (i.e., values at the kth iteration step). Thus, the 
pressure equation for all the grid points (shown by dots in Fig. 2) along the chosen 
line would be a tridiagonal set of algebraic equations and could be solved by the 
forward-backward substitution method. Much faster convergence would emerge if the 
chosen line is adequately in alignment along the direction of the propagation of 
disturbance. Therefore, the advantage of employing this line-by-line iteration scheme 
for solving the pressure equation is the fact that it avoids the multiple iteration 
procedures and the desirable accuracy is already reached by using the line-by-line 
scheme only once. Consequently, the present method has significantly reduced 
computing time. In order to demonstrate that the “one” iteration converges fast 
enough, a numerical test was performed and will be discussed later in Section VI. 

In summary, the execution procedures of this numerical program can be described 
as follows: 

(1) Begin with an initial solution (i.e., steady-state solution of the set of 
governing equations). 

(2) Prescribe the boundary conditions needed for consistency with the physical 
situation and compatibility equations. 

(3) After the initial steady-state solution and boundary conditions are 
obtained, we begin our solution at the (n + I)th time step and (k + 1)th iteration by 
determining the magnetic field (BF,f ‘) and temperature (~~,~‘) through, first, the use 
of Eq. (14) such that 

CBx)F,: ’ = CBx)Y,,j + $ l”f.j+ l,*((By>F,.i + CBy)f,.j+ I) - uf,.j- l,*((By)F,,j + CBy)f,j- 111 

+ 2Ay A!.- IvF,j-l12((Bx)f,j+ (B,)~,j~,)-v~,j+,,*((B,)~,j+ (Bx)f.j+l>l. 

Similar expressions for (BY):,? ‘, (B,)f,f ‘, and Tf,: ’ can be deduced from Eqs. (15), 
(16), and (17), respectively. 

(4) Substitution of the values of magnetic field and temperature obtained at the 
(n + 1)th time step and (k + I)th iteration (i.e., Bf,S ’ and Tf,f ‘) into Eqs. (1 I)-(13) 
leads to an equation containing the pressure and velocity at the (k + 1)th iteration. 
Thus, combining this equation with the continuity equation and equation of state 

yields 
(20) 

(21) 
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where 

+ $ (P~-l,j”:-3/2,ju:-1/2,j- 2P~,ju:-*,*,ju:+I/2,j 
c 1 

+ P:+l,j”:+,12,ju:+3/2,j) + -j$ [(Puu)f-1/2,j-1/2 - (Puv)~-l~2,j+ll* 

- (Puv)f+l/2,j- l/2 f (Puv)F+l/2,jt l/2 I + (2,’ (P:,j~Iv~.j~,/2v~,j~,/2 

-2P~,jv~,j-1/2v~,j+1/2 + P~,j+Iv~,j+1/2v~,j+3/2) 

+ + ($)' [((By)f':,j)2 + (CBz)f':,j12 

Thus, the pf*s ’ can be determined from Eq. (2 1) by using the line-by-scheme. 

(5) After pf,: ’ is obtained, the p:,f ’ can be computed from Eq. (20). 

(6) In the previous calculation, the velocity components used were the values 
at the kth iteration. Now the new values of velocity at the (k t 1)th iteration (i.e., 
uy, vy, and wf,s ‘) will be calculated from Eqs. (11 t( 13) by using all the other 
quantities at the (k + 1)th iteration. 

(7) Compare pf,:’ and pf,j until 

I Pf,f ’ - Pf,jl 
PF,i 

< E, (23) 

where E is a given tolerance error, which is 1O-3 for the present calculation. 
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(8) Repeat the procedure by entering the next time step if Eq. (23) is satisfied; 
if not, the computation will return to step (3). 

V. TREATMENT OF BOUNDARY CONDITIONS 

It is clear that computational boundaries must be introduced to limit the size of the 
domain of interest when we perform a numerical computation. Generally, boundary 
conditions with no reflection are chosen. Such nonreflecting boundary conditions 
were obtained by Engquist and Majda [lo] for a linear system of hyperbolic 
equations in multispatial dimensions. Hedstrom [ 111 extended this philosophy later to 
the nonlinear system with one spatial dimension. The use of systematic nonreflecting 
boundary conditions has not been extended to the case of a multidimensional 
nonlinear system because, for this case, the complex geometry of the characteristics 
makes the problem a difficult one. In this study, we propose such an extension, based 
on the method of projected characteristics [9, 161. The basic procedures for 
stipulating these boundary conditions can be summarized as follows: 

(i) All the characteristic equations are taken along the projected charac- 
teristics in the n - t plane, where n is the normal of the boundary in question. In 
particular, those characteristic equations along the outgoing projected characteristics 
are identified with compatibility equations. 

(ii) For a physical boundary, the maximum number of boundary conditions 
which can be arbitrarily specified to simulate boundary disturbances is equal to the 
number of incoming characteristics. The given boundary conditions and compatibility 
equations are combined into a complete system to determine the values of all the 
dependent variables on the boundary. 

(iii) For a computational boundary, all the spatial derivative terms of 
dependent variables are taken to be zero in the characteristic equations except for the 
compatibility equations; this approach leads to the so-called nonreflecting boundary 
conditions. The nonreflecting boundary conditions are then combined with the 
compatibility equations in order to determine the values of the dependent variables on 
the boundaries. 

The formulation of equations for the projected characteristics is included in the 
Appendix. A summary of the boundary conditions and their discrete forms are 
described below. 

V. 1. Boundary Conditions 

For the example given in Section VI, there are four boundaries to be specified (cf. 
Fig. 3): the bottom (y = 0) being a physical boundary; the top (y = y,), a 
computational boundary; and, in addition, the two sides (x = 0 and x = x,,) which are 
symmetric boundaries, since a periodic solution to represent the initial magnetic field 
is chosen. 
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FIG. 3. The initial magnetic configuration and the computational domain for a representative 
physical problem that is solved with the present FICE method. 

Figure 1 shows a staggered mesh in the computational domain. The index i refers 
to the horizontal coordinate (x), j refers to the vertical coordinate (JJ), and i f f and 
j f f refer to midway positions where the velocity components are stored. Other 
physical quantities are evaluated at points (i, j). In Fig. 1 we have identified the 
bottom and top with j = 1 and j = m, respectively, and the left and right sides with 
i = 5 and i = n - f, respectively. 

For the two side boundaries, consideration of symmetry leads to the boundary con- 
ditions: 

at x=0, P1.j = P2.j, 

Tl,j = T2,j, 

u - 0, 3122 - 

vl,j+l/2= v2~jtI/2~ 

wl,j=-w2,j, 

Px)I,j = Px)2,j5 

CBy)l,j = -CBy)2,j, 

CBz)I,j = tBz)2,j i 

(24) 
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at x=x0, Pn,j=Pn-l,j, 

Tn,j= Tn-l,j, 

24 - 0, n - Il2.j - 

v n,jt L/2 = v,-1..it I,!29 

w,,j= w,-I../’ 

CB,v)n.j= (4)n-l,i~ 

CBy)n.j= CBy)n-l.i3 

(B2)n,j” (Bz)n-I,,i’ 

(25) 

For the bottom boundary, there are five incoming projected normal characteristics 
and three outgoing ones if we take v > 0. Thus, we can only specify five quantities on 
the bottom which, in the case of simulating a shear motion disturbance in the y = 0 
plane, can be chosen such that 

Pi, I = Pc 3 

Ti.1 = Tc. 

4, I = 0, (26) 

wi,l 
= w(t) sin (i - 3/2b /4x 

2x, ’ 

CBy)i,l = CBy)i,l If=03 

with 

w(t) = f w, (0 < f < 51, 
(27) 

=w c (t > r>. 

Here, pc, T,, r, and w, are all parameters which are constant. The remaining quan- 
tities are determined by the compatibility equations that result from Eqs. (A.9), 
(A. 1 I), and (A. 13) with all the spatial derivatives in a forward difference scheme. 

For the top boundary, there are five outgoing projected characteristics and three 
incoming ones. Thus, there are five compatibility equations resulting from Eqs. 
(A.6)-(A.8), (A. lo), and (A.12), respectively, in the same way as for the bottom 
boundary, except that the derivatives with respect to y should be written with a 
backward difference scheme. Meanwhile, we obtain three nonreflecting conditions 
from Eqs. (A.9), (A.1 l), and (A. 13) in which all the spatial derivatives are taken to 
be zero, that is, the right-hand sides of these equations are set to be zero. 
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V.2. Discretization of Boundary Conditions 
The boundary conditions are necessary to put into their difference forms in the 

same way as the governing differential equations; namely, by using the full-implicit 
scheme. In order to avoid repetition, we describe some relevant procedures instead of 
the whole set of discrete equations. 

(i) All the spatial derivatives are evaluated in terms of the time-advanced 
values of dependent variables since a full-implicit scheme is applied. 

(ii) All the derivatives with respect to x are cast in the form of a central 
difference scheme such as, for the bottom boundary, 

Pi+1,1 -Pi-l.1 
2Ax ’ 

ui+ l/2,1 - ui- l/2,1 

Ax ’ 

vi+l,l/2 - vi-l,l/2 

2Ax ’ 

However, in the case of x and y components of magnetic field, the derivatives at the 
bottom boundary are written as 

i 1 
aB, 
I ax 

= (Bx)t+t,l - (Bx)i-I,, + (Bx)i+1,2- (B,r)i-l,2 
i,I 4AX 4AX ’ 

= (By)i+l.l -(By)i-l,l + (By)i+1,2-(By)i-1,2 
4AX 4AX ’ 

A similar approach is also used for the top boundary. 

(iii) All the d erivatives with respect to y are written in terms of an inward 
difference scheme for the bottom boundary, such as, 

ui+ l/2,2 - ui+ l/Z, I uik l/2,2 - ‘i- 112, I 

DAY 
+ 2Ay ’ 

vi,3/2 - vi,l/2 

Ay ’ 

But the pressure p at the bottom boundary is expressed in the form 

2(Pi,2 - Pi,11 
AY(Pi.2 + Pi,,) ’ 
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The specific difference formulae for p, B,, and B, on the boundaries have been 
chosen such that in the absence of a perturbation, the finite difference equations for 
static equilibrium are recovered, for example, 

Pi,l-Pi.*-4CPi.l +Pi.Z)gdY=o~ 

& ((Bx)i,l - (Bx)i.2) +& ((By)i+,., - (By)i-,,l + (By)i+l,2 - (By)i-,,2)=0. 

Finally, the above boundary conditions, together with the difference equations 
given earlier, are solved simultaneously by iteration. 

VI. NUMERICAL EXAMPLE 

In order to illustrate the usefulness of our FICE algorithm, a physical problem 
concerning the dynamical response of the static solar atmosphere due to a represen- 
tative photospheric disturbance is investigated. The numerical results relating to the 
physical response are presented elsewhere [ 121; here, we confine our discussion to the 
results of the mathematics which are presented below. 

VI. 1. Initial and Boundary Conditions 

Prior to the introduced of the disturbances at the bottom boundary, it is assumed 
that the atmosphere is in hydrostatic equilibrium with a uniform temperature and is 
permeated by a potential magnetic field (i.e., V x B = 0). The analytical initial 
conditions are taken to be 

po =Pce-‘RIR1‘)?, 

T,, = T,, 

v, = 0, 

B,, = B, ~0s z e ns’2.ro, 
‘0 

and 

B,, = B, sin e e - rry’2xo, 
0 C-28) 

B,, = 0, 

where p,, T,, and B, are arbitrary constants of density, temperature, and magnetic 
field, respectively. The initial magnetic configuration and computational domain is 
shown in Fig. 3. 

As the boundary conditions are concerned, the left and right sides (i.e., at x = 0, 
x0) are symmetrical boundaries, the bottom (y = 0) is a physical boundary, and the 
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top (y = y,) is considered a computational boundary. A physical disturbance (shear 
motion) is introduced on the lower boundary as 

up, x, 0) = 0, 

w(t, x, 0) = f w, sin 
r l 1 

JY.? 
2% 

for 0 <t < r, 

. 77x 

= Wcs’n 2% c-1 
for t>r, 

(29) 

where w, and r are arbitrary constants of velocity and time. Details of the boundary 
conditions are presented in Section V (i.e., Eqs. (24)-(27)). 

VI.2. Computational Stability and Accuracy 
A full-implicit scheme should be unconditionally stable. The only stability 

restriction on the time step At comes from the applied boundary conditions, that is, 
the compatibility equations along the projected characteristics. The stability condition 
is 

At<+, (30) 

where C is the maximum characteristic velocity of perturbations that propagate along 
the y direction in this case. For the present example, Ay = 400 km and C N 80 km/set; 
hence, we have At < 5 sec. We made some preliminary computations and found that 
the aforementioned iteration procedure is not convergent for any given E while the 
condition (30) is being violated. For those time steps that satisfy Eq. (30), we arrive 
at convergent solutions. The maximum iterative errors, for At = 1 set and 2 set, with 
old time step at 250 set, are plotted versus the number of iteration steps k in Fig. 4. 
We found that the errors for density and temperature are both less than that for 
pressure and, thus, are not shown in Fig. 4. Thus, we only show the maximum 
relative error for pressure, magnetic field, and maximum error flow velocity. 
Meanwhile, the reader is reminded that, prior to the first iteration step, there already 
is an additional step in which Wy,j (being updated at the old time step) is taken as 
W,!j results, where Wi,j represents all the eight physical quantities. This step is intrin- 
sically explicit; as a result, the errors at the first step in Fig. 4 imply that the 
maximum differences between the two sets of results obtained by using an explicit 
scheme and a full-implicit scheme, respectively, thus act as a very conservative 
estimate of the accuracy to the time step. We may extract from Fig. 4 the following 
conclusions: 

(1) The shorter the time step, the higher the accuracy results, and for the case 
of At = 1 set, the accuracy is better than 6 X 10-4. 
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FIG. 4. Iterative errors versus number of iteration steps for pressure, velocity, and magnetic tield 
with At = 1 set, 2 set, respectively, the old time step is at 250 set (s = set). 

(2) A shorter time step requires a small number of iteration steps under the 
same error tolerance E. Taking E = 10e3, only one iteration step is sufficient for 
At = 1 set, whereas two or even three are necessary for At = 2 sec. 

(3) Although the iterative process for the pressure equations has been omitted, 
the convergence remains fast. 
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VI.3. Numerical Results 

The parameters used in this example are summarized in Table I. The parameters in 
Table I correspond to the case of &, = 1, where /I0 is the ratio of gas pressure to 
magnetic pressure at x = 0 and y = 0 before the introduction of the shear motion. As 
mentioned earlier, the detailed physical results are presented elsewhere [ 12 ]. 
However, we will briefly describe the most significant findings for completeness. 

Figure 5 shows the three-dimensional representation of the density and temperature 
distributions in the x-y plane at different time steps (i.e., 100, 200, and 300 set) after 
the introduction of the out-of-plane velocity disturbance [ w(t, x, 0)] at the bottom 
boundary (i.e., at y = 0). From these results, we clearly observe that wave and mass 
motions have been generated due to this out-of-plane velocity disturbance. Physically, 
these dynamical responses are due to the anisotropic nonlinear MHD wave motions. 
Further, we can see that the wave motion propagates along the vertical axis (y axis) 
with the characteristic speed of the MHD fast wave (i.e., -60 km/set). The out-of- 
plane motion (w) propagates with the Alfvbnic mode (i.e., transverse wave, see 
Fig. 6), which is approximately half of the MHD fast wave speed. 

VI.4. Numerical Test of the Boundary Conditions 

In this section, we shall utilize the same physical example to test the present 
boundary conditions in comparison to the conventional ones. The conventional 
methods used for comparison are: 

(i) equivalue extrapolation, 

TABLE I 

Parameters 

Parameters Numerical Value Unit 

g 
Y 

R 
PC 
BC 
TC 
WC 
5 

X0 
YO 

Ax, AY 
At 
E 

0.271 km/set* 
1.67 Dimensionless 

1.653 x lo-* km’/K-sec2 
1.67 x lo-l2 gm/cm’ 
7.43 x 1o-s 3.545 X 10’ gauss 

105 K 
20 km/set 
20 set 

8000 km 
20000 km 

400 km 
1 set 

10-j Dimensionless 

(31) 
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FIG. 5. Three-dimensional representation of solar atmospheric responses to full shear motion 
(20 km/set) of footpoints of the flux tubes: Density enhancements Ap/p, (a, b, c) and temperature enhan- 
cement AT/T, (d, e,f) at different times for 8, = 1, where p,, and r, are the undisturbed values of 
density and temperature, respectively (s = set). 

and 

(ii) linear extrapolation, 

(32) 

It should be noted that the conditions expressed by Eq. (31) or (32) are used only 
when the disturbances reach the boundary, which is the top boundary of this study. 
Before the arrival of the disturbances, the values of Wi,m are kept at their initial 
values. In addition, the other boundary conditions remain unchanged. In order to 
save computer time, we have chosen a small domain for these tests (i.e., the top 
boundary is set at 4 x lo3 km instead of 8 x 10” km as in the numerical example). 

Before computing numerical tests of these boundary conditions (i.e., those 
conditions given in Eqs. (31) and (32) and the present nonreflecting condition), a 
standard solution should be established for clarifying the errors caused by them. For 
this purpose, we have used the solutions obtained-in the previous section. 

Figure 7 shows the relative errors of temperature, density, horizontal and vertical 
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FIG. 6. Vertical velocity v (a, b, c) and out-of-plane velocity w (d, e, f) dispersion profiles as a 
function of height at various horizontal locations (i.e., &x0, s-x,, and gx,,) and different times (i.e., 
100, 200, and 300 set) after introduction of a full shear motion of the footpoints of the flux tubes shown 
in Fig. 3. The computation is performed for an initial plasma beta, 0, = 1. 
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FIG. 7. Relative errors (due to various boundary conditions on the top) versus height at 33 set after 
the arrival of the disturbance at the top. The curves are plotted for three typical horizontal positions with 
x= k-x,,, sx,, and g-x,, respectively: (a) temperature, (b) density, (c) horizontal magnetic field,- 
(d) vertical magnetic field. 



FICE, MHD FLOWS 55 

5- 
x=1/4ox~ 

/’ 

-e- _-- 
/MC 

0-- 
-.-.-._* I 

1 
7. 

3 4 -” 

~ EXACT SOLUTION l\ 
X103km 

-5- ------LINEAR ‘\ 
‘1. 

-.-.-.-.- EOUI-VALUE ‘. 
‘. 

-10 - 1. 
\ 

‘\ 

“1 
-15 - 

(aI 
v (km/r) 

.‘\, 

+ 

10 - HMO 

x = 21140 x0 
/’ 

/’ 
/ 

5- /’ 

0 -V 

‘\ 
-EXACT SOLUTION X103 km 

-5 - ------LINEAR 

-.-.-- ECIUI-VALUE 

-lo- 

v lkm/rl 
t 

15 - 

lo- x=38/40x0 

l, 

‘\ 

“1 

\ 
(b) ‘\ 

/ 
/ 

/ 
/’ 

/ 
/ 

/ 
/ 

/ 

0 
1 2 3 \ 4 -V 

-EXACT SOLUTION 
‘1 

-5 - ------LINEAR 
‘\ 

\ 
-.-.-.- EOLJI-VALUE ? 

(cl \ 
-1o- 

x 103km 

FIG. 8. Vertical velocity versus height at 33 set after the arrival of the disturbance at the top. The 
curves correspond to various boundary conditions and horizontal positions. 



56 

20 

ia 

-ia 

HU AND WU 

p (90 

- EQ”‘-VALUE 
_--- - LINEAR 

t bml 

FIG. 9. Energy errors due to various boundary conditions on the top versus time after the arrival of 
the disturbance at the top. (EK, E,, and E, denote kinetic, thermal, and magnetic energies, respec- 
tively.) 

magnetic fields versus height at 33 set after the arrival of the disturbance at the top 
for different boundary conditions and several typical horizontal positions. A similar 
plot for vertical velocity is presented in Fig. 8. Finally, in Fig. 9 we have plotted the 
relative errors of magnetic, kinetic, and thermal energies versus time after the arrival 
of the disturbance at the top. Curves based on the use of nonreflecting boundary 
conditions are not presented in these figures because the corresponding errors are too 
small to be visible. The maximum errors of these physical quantities associated with 
the use of various boundary conditions at 33 set after the arrival of the disturbance at 
the top are given in Table II. 

We find that even the method advocated in this paper has increasing reflection as 
time elapses. The numerical example described here demonstrates that the merit of 
our method lies in the substantial improvement of numerical accuracy that it has over 
other previous methods. Gustafsson and Kreiss [ 131 noted that a necessary condition 
for the validity of such nonreflecting boundary conditions is that the solution of the 
original problem only change slowly with respect to space and time. This is not 
necessarily satisfied in practice, whereas, the present method maintains much smaller 
reflection and therefore gives much better accuracy. 
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TABLE I1 

Maximum Errors Due to Three Boundary Conditions at 33 set 
after the Disturbance Arrives at the Top 

Present 
Method 

Linear 
Extrapolation 

Equivalue 
Extrapolation 

!q! (1%) 0.1 14 19 

Y(S) 0.3 21 37 

2.7 40 36 

0.6 4.0 6.5 

/Au 1 (km/set) 0.03 I1 18 

0.1 3.5 12.4 

0.1 1.9 15.1 

Ial’ ET (“/) 0.1 1.0 5.4 

’ E, = B2/8n, magnetic energy. 
b E, = f&u2 + v2 + w’), kinetic energy. 
‘E, = ypl(y - l), thermal energy. 

VII. CONCLUDING REMARKS 

We have developed an algorithm and method to specify both physical and 
computational boundaries for the initial boundary value problem of 
magnetohydrodynamic (MHD) flows in two-dimensional space. The FICE scheme is 
a generalization of the ICE technique originally developed to demonstrate its 
application to some practical problems. In conclusion, the algorithm has the 
following distinguishing features: 

(1) The whole set of MHD equations is put into the form of discrete equations 
of a full-implicit scheme. This approach is more stable and capable of guaranteeing 
the physical reality of the numerical results as demonstrated for a well-posed test 
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case. In particular, this method promises to be more accurate than others for 
subsonic, sub-alfvenic flow problems. 

(2) The actual ideal equation of state is adopted in the derivation of the 
Poisson-like equation for the time-advanced pressure, rather than a simulated one. 
The latter sometimes bring about misleading results. 

(3) Solving the Poisson equation for the time-advanced pressure by the line-by- 
line method has been justified and is better than the nested iteration loop, thereby 
making the present full-time implicit method tractable and feasible. 

Based on the above features, we conclude that the FICE algorithm is a useful tool 
for the numerical study of the initial boundary value problem of MHD flows for slow 
(and, possibly, even fast) motions. 

This algorithm has now become an important tool for our investigation of 
astrophysical problems such as mass injection from the solar surface and its relation 
to coronal disturbances [ 141, and magnetic energy buildup in the solar atomsphere 
[ 15 ]. In addition, it is believed that this newly developed algorithm can be used to 
examine the problem of nonlinear wave interaction with a nonhomogeneous ambient 
medium. Problems of this kind will form the basis for future applications of this 
algorithm. 

Finally, we note that the suggested method of specifying the boundary condition is 
a natural generalization of conventional one-dimensional characteristic boundary 
conditions. Currently, we have not proved its validity theoretically but the 
applicability of the method should be further refined. We believe that any endeavor in 
this direction would certainly be fruitful. 

APPENDIX: FORMULATION OF PROJECTED CHARACTERISTIC EQUATIONS 

The governing equations for the two-dimensional time-dependent MHD flow are 
given by Eqs. (l)-(9). This system has been recast in a vectoral form which can be 
written as 

i?W -=-*g-C%W+S, 
at 3Y 

(A.11 

where w and S are column vectors with eight components, representing the dependent 
variables and source functions represented as described in Eqs. (l)--(8). The vectors 
A and @ are 8 x 8 matrices; the arguments of these matrices being functions of 
physical quantities and independent variables. The latter are the two spatial coor- 
dinates, horizontal coordinate (x) and vertical coordinate (y), and time (t). 

Furthermore, the boundary has been chosen so that the unit normal n on the 
boundary is along the vertical coordinate y. Therefore, the characteristic equations 
along the projected normal characteristics will be found in the y-t plane. The analysis 
of projected characteristics can be found in a study by Nakagawa and Hu [9]. The 
matric C is 
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C= 

; 0 
0 t; 

p 0 0 0 0 0 0 -By/p 0 0 0 0 

; 
0 I/P B,IP 0 Bzlp 

0 0 
: 

0 0 0 -4.1~ 
0 0 dp 

0 -B,, B, 0 Fi 

0 0 0’ (A.21 

0 0 
00 0 0 0 ; 0 
0 0 BZ -By 0 0 ti c’ 

Here the variables are: p, density; U, the y component of velocity; B,, B,, and B, are 
the three components of the magnetic field; and a is the adiabatic speed of sound. Let 
us denote the left eigenvectors of C by rlj, thus, 

‘lj@ = Ljqj (j = 1, 2 ,..., S), G4.3) 

where the eigenvalues 2, are 

Aji= v, v* v‘l, v f Vf, Vf v,, (A.4) 

with 

V:, = B:/P, 

V; = 4 [a’ + b2 + \/(a’ + b2)2 - 4a2 V:, 1, 

V; = 4 [a2 + b2 - &a’ + b2)2 - 4a’V:, 1, 

and 

b* = $ (Bf; + B; + Bf). 

The projected, normal characteristics are described by the equations 

The corresponding characteristic equations along these projected normal charac- 
teristics are listed with their respective projected normal characteristics: 

dy 
z= v, 

a 3P a2&-p4x+A,, 

l3B 
2 = z, + z, ; 
at 

(-4.6) 

(A.7) 
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dY 
-=u+ VA, 
dt 

-B,B,~+B,B,~+B,VA~- 
aB 

B,V,,~=C,+C,; (‘4.8) 

&Lu-v 
dt A, 

B,B,$-B,B,$-+B,Y,- 
aB 
at 

-BxVA~=D,+D,: (A-9) 

& -=u+ v*, 
dt 

-BxB,Vf$+pVf(V;-V;)~-ByBzV$+(v;-V;)~ 

+B,V’ f~+B,V’h,+E,; 
* at 

(A. 10) 

dyzu- V 
dt f’ 

B,B,V+-pV#;- V;);+B,BzV,~+ (v;- vi); 

+B,V$- 2 aB, 
at 

+B,Vfz=Fx+Fy; (A.ll) 

dy -= u + v,, 
dt 

B,B,V$+pY,(V: - V;);+B,B,Y,g+ (v; - vf)f$ 

-B,V$-$- B,V:$=G,tC,; (A.12) 

f!Lu-V 
dt S) 

-B,B,Y,$-,oVJV;- V:);-B,B,V,~+(V;- V:)$ 

-B,V,2 --B,V;~=H,+H,; 
aB 
at 

(A.13) 
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where u and w are the x and z components of velocity, p the pressure, and 

A,=-a’ug+u$ (A.14) 

A,=--a2p2tL’2 
aY au’ 

(A.15) 

c?B 8B 
Ix=-B,‘;+Bx~+v-&-u+ (A.16) 

I, = 0, (A. 17) 

B B i$ 
C,=B,(B,u+B,V,)~-B,(B,u+B,vA)~+=- 

P & 

- wB, VA 2 + B, V; 2 + [B,(b2 - Vi) + uB, VA] 2, (A.18) 

8B 
C,=(u+ VA) 

I 
ByBz~-BxBy~-B,VA “+B,V,%B, 

aY aY 

+ V,(B,u-B,w)% 
aY 

(A. 19) 

B B dp 
D,=B,(-B,~+B,VA)~+B,(B,u-B,vA)~-II- P ax 

- wB,v, %- BJ$$“+ [-B,(b2- V;)+UB,V,$$ (A.20) 

D,=(u- VA) 
I 
-ByB2;+BxBy-+V, 

8B 
“+B,V$ 

aY aY I 

+ V,(B,u-B,w)~, (A.21) 

E,= V,[uB,B,- V,@V;-B:-B;)]$uV,(V;- v;); 

+ B, v,(B, u + Bx vf> ax a”+ [B,B,v,-ppu(v;- v;)]$z 

+ wB,V;% 3 aBY 2 aBz 
+B,Vfax-~B2”fax, (A.22) 
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E, = (u + Vf) B,B V fff - pV#‘; - Vi) $ + B,B, Vf$ y fay 

-(V;-V;)$-B,V; yy ~-B,V2~ 
f aY I 

--pVfg(V;- V;) 

+ V;(B,u+B,w)~, (A.23) 

F,=-V-&B,B,+ ~~~v;-B:-Bj)]~+puvr(v:-V-;)~ 

-B,V,(B,u-B,Vf)$- [B,B,V,+pu(V;- V:)]+$ 

+ wB&$$- B,V3%uB v2c?B, 
f ax z f ax ’ 

(A.24) 

G,=(v+ V,) -B,By+pY,(Y;- V$-B,B,V,g 
L 

-(V;--V;)g+B,V+ +B,y:$f 
I 

-pV,g(V;- V,') 

- V&B, + wB,) $f’, (A.27) 
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(A.28) 

H,=(v-&) B,B,V,%U+PV,(V:--V:)~+B,B~V,~ 
I ay ay 

-(V;- V;)$+B,V+ +B;V:$ +pV,g(V; - V,‘) 
I 

- V;(uB, + wB,) 2. (A.29) 

Here g is the gravitational acceleration. The boundary conditions we wish to 
prescribe for the initial boundary value problem are given by Eqs. (A.6)-(A.13). 
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